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In this paper we investigate the basic physics of charge carriers �electrons� leaking out of the inversion layer
of a metal-oxide-semiconductor capacitor with a biased gate. In particular, we treat the gate leakage current as
resulting from two combined processes: �1� the time-dependent decay of electron wave packets representing
the inversion-layer charge and �2� the local generation of “new” electrons replacing those that have leaked
away. As a result, the gate current simply emerges as the ratio of the total charge in the inversion layer to the
tunneling lifetime. The latter is extracted from the quantum dynamics of the decaying wave packets, while the
generation rate is incorporated as a phenomenological source term in the continuity equation. Not only do the
gate currents calculated with this model agree very well with experiment, the model also provides an onset to
solve the paradox of the current-free bound states representing the resonances of the Schrödinger equation that
governs the fully coupled metal-oxide-semiconductor system.
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I. INTRODUCTION

In order to enhance the performance and the integration of
modern field-effect transistors their size needs to be further
scaled down. As is well known, this scaling trend, which is
generally expected to hold for most device geometries that
contain ultrathin oxide layers, leads to an exponential growth
of the gate leakage current due to tunneling.1,2 The latter, in
turn, will increase the power dissipation inside the down-
scaled devices to unacceptable levels. In this light, it is ut-
terly important to acquire detailed knowledge about the ori-
gin of the leakage currents and the underlying physical
mechanisms.

During the past decades, many attempts have been made
to construct simple and yet sufficiently accurate models ac-
counting for the basic features of the gate tunneling pro-
cesses. Most of them fall into two categories. The first cat-
egory is based on the Bardeen approach3,4 in which the cur-
rent matrix element arising from the overlap of two sets of
nonorthogonal wave functions, respectively, describing the
isolated gate-oxide and oxide-semiconductor regions plays a
key role. Being inspired by Gamow’s theory for alpha-
particle emission from atomic nuclei5 and Breit-Wigner scat-
tering theory,6,7 the models from the second category8–11 rely
on a continuum of eigenstates describing the stationary states
of the coupled gate-oxide-semiconductor system. The con-
tinuum states include a discrete subset of resonant states rep-
resenting the quasibound states that are populated by elec-
trons with a significant tunneling probability amplitude.
Denoting, respectively, by �res�r� and m the wave function of
an arbitrary resonant state and the effective mass in the leak-
age direction, the quantum-mechanical current density car-
ried by �res�r� reads

Jres�r� = −
e�

m
Im��res

� �r� � �res�r�� . �1�

If the resonant energies exceeded US, the constant potential
energy of the substrate’s neutral region, the wave functions
�res�r� would asymptotically behave like plane waves propa-
gating toward either the substrate or the gate region. Accord-

ingly, the energy spectrum would be doubly degenerate
while their complex wave functions would represent travel-
ing states. However, when the device operates in inversion
mode, all occupied energy levels are below US and corre-
spond to nondegenerate evanescent modes vanishing expo-
nentially in the substrate. In particular, the resonant states are
populated by electrons that spend a lot of time in the
inversion-layer potential well. As such, these states are qua-
sibound states, whereas the associated wave functions can be
taken real due to the lacking degeneracy. Consequently,
�res�r� can be taken real and hence the corresponding reso-
nant state cannot carry a tunneling current as Jres�r� is seen
to vanish.12 Because of this paradox, the real gate current
cannot be written as a statistically weighed sum over all in-
dividual tunneling current contributions associated with sta-
tionary resonant states.

In this work, we have attempted to resolve the above
paradox by abandoning the stationary character of the global
leakage process, studying the time-dependent tunneling de-
cay of a charge packet initially and locally injected into the
inversion layer, and invoking local carrier generation as a
proper refilling mechanism to replace the leaked-out charge.
The time-dependent decay of the inversion-layer charge
package, including the extraction of tunneling lifetime is
treated for a metal-oxide semiconductor capacitor in Sec. II,
whereas three practical methods to describe uncoupled or
localized inversion-layer electrons are discussed in Sec. III.
A simple but consistent model representing the generation-
based refilling mechanism is proposed in Sec. IV. Finally,
some typical results obtained from the gate current model are
presented and discussed as well as compared with related
formalisms in Sec. V and the paper is concluded in Sec. VI.

II. DECAY OF THE INVERSION-LAYER CHARGE

We consider a metal-oxide-semiconductor �MOS� capaci-
tor in which an n channel �p-type semiconductor� is induced
by virtue of a positive voltage applied at the metallic gate
side. The z axis is taken to be perpendicular to the three
capacitor layers such that the plane z=0 coincides with the
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semiconductor/oxide interface while full translational invari-
ance is assumed along the intervals 0�x�Lx and 0�y
�Ly in the lateral x and y directions. From here on, r
= �x ,y� will denote the position vector in the �x ,y� plane. The
size of the gate and semiconductor regions is considered vir-
tually infinite compared to tox, the thickness of the ultrathin
oxide layer. The three-dimensional volume encompassing all
layers of the coupled structure will be denoted by � whereas
its semiconductor part hosting the inversion-layer potential
well z�0 will be labeled by �W. The potential-energy dia-
gram of the biased MOS capacitor is shown in Fig. 1. An-
ticipating the introduction of the generation mechanism lo-
cally compensating for the loss of inversion-layer electrons,
we assume that at some initial time instant t=0 the inversion-
layer charge is confined to the semiconductor potential well
�W. Consequently, the single-electron states populated by
the corresponding electrons are not stationary energy eigen-
states of the Hamiltonian governing the entire �MOS� capaci-
tor, allowing for electron tunneling through the oxide layer.
Indeed, due to the latter, electrons occupying the continuum
of stationary eigenstates and, particularly, its subset of reso-
nant states may have a significant nonzero amplitude of be-
ing found outside the inversion layer.

On the other hand, being initially in the nonstationary
states, the electrons will penetrate through the barrier into the
gate region as time evolves. We investigate the dynamical
behavior of these electrons under the assumption that no
other interactions are affecting the tunneling processes. The
corresponding quantum dynamics is conveniently treated in
the Heisenberg picture tracing the time evolution of the elec-
tron field operator ��r ,z , t� and convenient creation and an-
nihilation operators. At an arbitrary time t, the electron field
operator ��r ,z , t� can be expanded in a complete set of con-
tinuum states �k�r ,z� representing the one-electron energy
eigenstates for the fully coupled system � consisting of the
gate, oxide, and well regions

���r,z,t� =� dkck��t��k�r,z� , �2�

where ck�
† and ck� are fermion creation and annihilation op-

erators for the stationary continuum state �k�r ,z� with en-
ergy Ek and � is a spin index. Clearly, the wave number k is
a continuous variable characterizing �k�r ,z� as a standing

wave in the gate region �z	−tox�. However, the integral over
k should be understood to include also a summation over the
two-dimensional wave vectors appearing in the plane waves

1
�LxLy

exp�ik · r� �3�

that represent the r-dependent part of the wave functions.
Presently, the envelope function approach is adopted and,
consequently, it is assumed that the “parallel” wave vectors
are being conserved during the barrier tunneling processes,
whereas the energy eigenvalues Ek can be written as the sum
of the kinetic energy related to the lateral motion and a term
Wk describing the perpendicular motion that does not depend
on the wave vector k. This restriction may, however, be re-
laxed to generalize the formalism whenever appropriate.

The second-quantized Hamiltonian governing the time
evolution of the coupled system � reads

Ĥ = �
�
� dkEkck�

† ck�, �4�

from which the trivial time dependence of the annihilation
operators can be extracted

ck��t� = exp�−
iEkt

�
	ck��0� . �5�

Similarly, we may construct a Hamiltonian for the uncoupled
system �W consisting merely of the inversion-layer well
with an ensemble of strictly confined electrons

Ĥ0 = �
n�

E0ncn�
† cn�, �6�

where the subband index n now labels the bound states with
discrete energy eigenvalues E0n and the corresponding “un-
perturbed” wave functions �n�r ,z� that are vanishingly small
or tend to zero in the gate region. Again, it should be noted
that n also runs over the set of two-dimensional wave vectors
k. Being complete only with respect to the subspace of lo-
calized well states, the set �n�r ,z� can only be used to ex-
pand the field operator at t=0,

���r,z,0� = �
n

cn��n�r,z� . �7�

Since the basis set in Eq. �2� can be considered orthonormal,
the operators ck��0� behave as Fourier coefficients

ck��0� = �
�

d3r�k
��r,z����r,z,0� . �8�

Substituting Eq. �7� into Eq. �8�, we may express ck��0� as
the linear combination of the operators cn�

ck��0� = �
n

cn��
�

d3r�k
��r,z��n�r,z� 
 �

n


kncn�, �9�

with

z

U(z)

gate oxide semiconductor

FIG. 1. �Color online� Potential-energy profile of a MOS capaci-
tor biased with a positive gate voltage.
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kn = �
�

d3r�k
��r,z��n�r,z� . �10�

Next, we introduce the operator Q̂ counting the total electron
charge in the inversion-layer well �W

Q̂ = − e�
�
�

�W

d3r��
†�r,z����r,z�

= − e�
�
� dk�� dk�k�kck��

† ck�, �11�

where

�k�k = �
�W

d3r�k�
� �r,z��k�r,z� �12�

is the overlap integral of the coupled-system eigenstates re-
stricted to the well region. In the Heisenberg picture the
time-dependent inversion-layer charge Q�t� is obtained by
taking the statistical average with the initial density matrix
�0, while the time dependence is embedded in the Heisen-
berg operator

Q�t� = �Q̂�t�� 
 Tr��0Q̂�t�� . �13�

From Eq. �11� it follows that

Q�t� = − e�
�
� dk�� dk�k�k�ck��

† �t�ck��t��

= − e�
�
� dk� dk��k�k

�exp
 i

�
�Ek� − Ek�t��ck��

† �0�ck��0�� . �14�

Using Eq. �9�, we can rewrite the correlation function
�ck��

† �0�ck��0�� as

�ck��
† �0�ck��0�� = �

nn�


k�n�
�


kn�cn��
† cn��

= �
n


k�n
�


knF�E0n − 
� . �15�

The latter equality results from the explicit assumption that
the initially localized electrons are in a thermal equilibrium
state, i.e.,

�cn��
† cn�� = �n�nF�E0n − 
� , �16�

where F�E� is the Fermi-Dirac distribution function with
chemical potential 
. Combining Eqs. �14� and �15�, we ar-
rive at the final expression for the time-dependent inversion-
layer charge

Q�t� = − 2e� � dk�dkMk�k exp
 i

�
�Ek� − Ek�t� , �17�

with

Mk�k = 
�
n


k�n
�


knF�E0n − 
���kk�. �18�

In practice, the numerical algorithm extracting the time de-
pendence of Q�t� from Eq. �17� involves the following basic
steps: �1� to solve self-consistently the Schrödinger and Pois-
son equations to get the stationary wave functions �k�r ,z� of
the coupled system, including the subset of resonant states,
for a given gate voltage VG; �2� to keep the potential profile
of the coupled system and to solve the Schrödinger equation
for an isolated inversion layer yielding the subband wave
functions �n�r ,z� and their energies E0n; �3� to calculate the
“memory matrix” Mk�k by combining the results of the two
previous steps and to extract Q�t� from Eq. �17�; and �4� to
determine the tunneling lifetime by fitting Q�t� against a
purely exponential decay law.

Some remarks are in order. First, there are several ways to
decouple the inversion-layer charge artificially from the
other regions of the MOS capacitor. Three such approaches
are discussed in the next section. Next, it should be noted
that the computational effort required to obtain the subband
structure is rather moderate because the resonant energies
obtained from step �1� are sufficiently close to the subband
energies of the decoupled electrons �except for very leaky
structures�.8–10 Hence, they provide an excellent initial guess
for the subband energy spectrum to be determined in step
�2�. Finally, the exponential decay which is conjectured in
the last step to describe adequately the long-time tail of Q�t�
is not a general quantum-mechanical result, as pointed out
clearly by Merzbacher13 in a section on decay phenomena. In
the present case, it can only be justified when the continuum
resonances are so sharply peaked around the resonant ener-
gies Eres that their amplitudes can be accurately represented
by distinguished bell-shaped curves �Lorentzians�8–10 of the
form ��E−Eres�2+�res

2 �−1, where �res is half the width of the
resonance Eres. This condition is fulfilled—again—in case
the real oxide layer is not extremely thin �tox	1 nm�.

As a final remark, we briefly discuss the boundary condi-
tions obeyed by the continuum states. Since we restrict the
present work to the case of MOS capacitors operating in
inversion mode, we may fairly state that, within the continu-
ous energy spectrum of the coupled system, no traveling
states are occupied. However, as was mentioned in the intro-
duction, the continuum states and the subset of resonant
states are evanescent modes giving rise to the following
boundary conditions for the corresponding wave functions in
the deep substrate:

�k�r,z� → e−�kz for z → � . �19�

Within the envelope function approximation, the attenuation
factor �k reads

�k =
�2m�US − Wk�

�
. �20�

The gate region may be viewed as the interval �−tox−L ,
−tox� where “closed” �Dirichlet� boundary conditions are im-
posed on the left side,
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�k�r,z = − tox − L� = 0. �21�

In practice, having taken the limit L→�, we end up with a
continuous energy spectrum the wave functions of which are
delta normalized according to

��k���k� = �
�

d3r�k�
� �r,z��k�r,z� = ��k� − k� . �22�

As outlined in Refs. 8–10, the transfer matrix method pro-
vides a convenient numerical implementation of the con-
tinuum wave functions and, particularly, their boundary con-
ditions, since its piecewise constant potential profile
incorporates both the gate region and the deep substrate in a
most natural way.

III. LOCALIZATION SCHEMES

Considering carrier localization as a gedanken experi-
ment, we can propose several ways of preparing a packet of
electrons being localized in the inversion layer at t=0, all
giving rise to different decay profiles. On the other hand, the
measurement of a stationary gate current involves a real ex-
periment not being related to any gedanken experiment
whatsoever. However, it goes without saying that carrier lo-
calization is a key ingredient for predicting gate currents in
the theoretical model we propose herewith. Therefore, we
need to ascertain that the calculated gate currents do not
depend in essence on the details of the schemes adopted to
localize the initial electron charge. To this end, we study
three different localization schemes which are graphically
summarized in Fig. 2.

Being adopted in the first scheme �“infinite barrier”�, the
simplest method to induce carrier localization inside the well
relies on the assumption of an infinitely high oxide barrier
prohibiting the penetration of electrons through the oxide
layer. This amounts to complementing the Schrödinger equa-
tion

−
�2

2m
�2�n�r,z� + U�z��n�r,z� = E0n�n�r,z� �23�

with a hard wall boundary condition at the semiconductor/
oxide interface plane z=0

�n�r,0� = 0. �24�

Here, �n�z� denotes the envelope wave function of the nth
subband whereas m denotes the electron effective mass in the
confinement direction �z�. In turn, the localized electron en-
semble, constructed with the solutions of Eq. �23�, gives rise
to an electron concentration which equally vanishes at the
interface.

In the second scheme �“step barrier”� the oxide barrier
height is taken to be a finite constant, while the oxide layer is
assumed to be infinitely thick, acting as an abrupt potential
step. In that case, the single-particle Schrödinger Eq. �23�
needs to be extended to oxide region where it will give rise
to exponentially damped wave functions. Furthermore, the
wave functions and their probability currents must be con-
tinuous across the interface z=0, leading to

�n�r,0−� = �n�r,0+� , �25�

�n

mox
�n�r,0−� =

1

m
� ��n�r,z�

�z
�

z=0+
, �26�

where mox is the electron effective mass for the oxide and �n
determines the attenuation of the wave function inside the
oxide, due to the presence of a constant, finite oxide barrier
Uox

�n =�2mox�Uox − En�
�2 . �27�

As in the previous case, the step-barrier scheme leads to a set
of the discrete subbands. However, in this situation the wave
functions take a �small� nonzero value at the interface plane.
For both cases the statistical average of cn��

† cn� is given by
Eq. �16�, i.e.,

�cn��
† cn�� = �n�nF�E0n − 
� , �28�

where the chemical potential 
 is determined such that the
initial inversion-layer charge Q0=Q�0� is consistent with the
potential profile of the coupled system.

The third method is referred to as “MOS capacitor” or
shortly “MOS cap.” because the localized charge distribution
utilizes the eigenstates of the fully coupled MOS system. As
such, the corresponding approach is somewhat different in
the sense that the localized states are now constructed by
taking appropriate linear combinations of the coupled system
eigenstates. More specifically, the nth localized bound-state
wave function is taken to be a superposition of stationary
wave functions having energies in a narrow interval Cn
around the nth resonant energy En

z

U(z)

gate oxide semiconductor

∞
“infinite barrier”
“step barrier”
“MOS cap.”

FIG. 2. �Color online� The potential profiles corresponding to
three localization schemes. The first and second schemes, respec-
tively, correspond to an infinite-barrier height and an infinite-barrier
thickness while the third scheme exploits the potential profile of the
whole MOS capacitor.
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�n�r,z� = �
Cn

dk�n�k��k�r,z� . �29�

Here, the functions �n�k� denote the amplitudes of the con-
tinuum states ��k� contributing to the superposition, whereas
kn defines the nth resonance, i.e., Ekn

=En. �kn denotes the
width of the nth resonance peak and the integration interval
is given by Cn= �kn−M�kn ,kn+M�kn�. M is an adjustable
parameter that should chosen sufficiently large in order to
encompass the relevant part of the resonant peak in the lo-
calized state ��k� and sufficiently small in order to avoid
overlap with neighboring resonances. This can only be
achieved when �1� the widths of the resonant peaks are sev-
eral orders of magnitude smaller than the resonant energies
and �2� the same applies to the ratio of the peak values and
the nonresonant amplitudes. Both conditions are obviously
fulfilled in the relevant case where the MOS capacitor is not
extremely leaky and M typically ranges between 100 and
200. In this light, the motivation for the superposition based
approach is that, being part of the continuous spectrum, only
the resonant states and their closest neighbors have an appre-
ciable amplitude of hosting electrons that are localized inside
the inversion layer, while the function �n�k� is chosen so as
to maximize the charge density of �n�r ,z� in the inversion
layer. Furthermore, as the states ��n� are generally not eigen-
states of an Hermitian operator, their orthogonality is not
automatically warranted. On the other hand, the continuous
eigenstates ��k� have been chosen to satisfy delta normaliza-
tion with respect to k, as mentioned in Eq. �22� from which
the normalization of the states ��n� can be determined
straightforwardly

��n���n� = �
Cn�

dk��
Cn

dk�n�
� �k���n�k���k���k�

= �
Cn�

dk��
Cn

dk�n�
� �k���n�k���k� − k�

= �
Cn��Cn

dk�n�
� �k��n�k� . �30�

Consequently, given two different resonances n and n� the
cross-section Cn��Cn is empty provided M is chosen suffi-
ciently small. Hence, we can safely consider ��n� and ��n��
orthogonal states for n�n�. On the other hand, imposing
orthonormality, we infer from Eq. �30� the normalization re-
quirement

�
Cn

dk��n�k��2 = 1. �31�

In summary, we need to maximize the charge inside the well
region under the constraint of Eq. �31�, which may be ac-
complished by calculating the extremum of the functional

G��n�k�� = �
�W

d3r��n�r,z��2 − ��
Cn

dk��n�k��2

= �
Cn

dk��
Cn

dk�n
��k���n�k��k�k − ��

Cn

dk��n�k��2,

�32�

where � is a Lagrange multiplier. The stationary value of G
corresponds to the zero of the variation �G which is obtained
for all first-order variations ��n�k� that are vanishing at the
end points of Cn. This leads to the integral equation

�
Cn

dk��k�k�n�k�� = ��n�k� , �33�

the solution of which implicitly depends on �. From here on,
the functions �n�k� are taken real because the wave functions
involved can, as well, be considered real. In turn, the
Lagrange multiplier � is determined by fulfilling the normal-
ization condition

�
Cn

dk��n�k;���2 = 1. �34�

In practice, we have discretized Eqs. �33� and �34� by intro-
ducing an equidistant mesh of N, k values specifying the
interval Cn as shown in Fig. 3. Absorbing the mesh distance
into the set �ni , 1� i�N which represents the restriction of
�n�k� to the mesh points, we are left with the remaining task
of finding the normalized eigenvector ��n1 , . . . ,�nN� corre-
sponding to the largest eigenvalue � of

�
j=1

N

�nij�nj = ��ni for 1 � i � N , �35�

where �nij is the discretized version of �k�k for the interval
Cn. Finally, we need to derive the correlation function
�cn��

† cn�� to be used in the MOS cap. localization scheme.
Starting from the inverse of Eq. �7�, we obtain

k

|φk(r, zwell)/φk(r, zgate)|2

kn

FIG. 3. �Color online� Typical ratio of the electron density in the
well to the density in the gate as a function of k around the nth
resonant peak, extracted from a continuum wave function. The
dashed vertical lines indicate the N wave-function samples used to
construct �n�r ,z�, running from kn−M�kn to kn+M�kn.
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�cn��
† cn�� =� � dk�dk
k�n�
kn

� �ck��
† �0�ck��0�� . �36�

Since this scheme adopts as well the Gibbs ensemble to de-
termine the initial density matrix of the coupled system, we
further obtain

�cn��
† cn�� =� � dk�dk
k�n�
kn

� F�Ek − 
���k� − k�

=� dk
kn�
kn
� F�Ek − 
� , �37�

where 
 is now the chemical potential of the coupled system.
Clearly, from the very definition of �n�r ,z� and due to the
delta normalization of the continuum eigenstates, it follows


kn = �
Cn

dk��n�k����k� − k� = ��n�k� if k � Cn,

0 else.
�

�38�

Since, by construction, the intervals Cn do not overlap, the
product 
kn�
kn

� can be nonzero only if n=n�, whence

�cn��
† cn�� = �n�n� dk�n

2�k�F�Ek − 
� . �39�

As an illustration, the steady-state configurations �t→�� re-
sulting from the three localization schemes are shown in Fig.
4. For the sake of comparison, the quasistatic density profile
obtained from Ref. 9 by averaging the contributions from the
continuum states within an ad hoc steady-state Gibbs en-
semble, assigning different chemical potentials to left and
right tunneling is also shown. It turns out that the MOS cap.
scheme provides a very pronounced localization of the initial
charge packet. Although it is composed by means of the
basis of the continuum states penetrating in the oxide and
gate regions, near the interface its distribution is very similar
to that of the infinite-barrier case. This indicates that the
solution of the coefficients in Eq. �29� is such that the sample
wave functions �in�z� selected for the interval Cn cancel out
each other near the interface while they seem to interfere
constructively inside the well. Also from the lower curve of
Fig. 4 it follows that the charge distribution produced by the
step-barrier scheme which assumes an infinitely step oxide
barrier, takes almost the same values near the interface as the
one that corresponds to the fully coupled MOS capacitor
extending to the gate region.

IV. A SIMPLE REFILLING MECHANISM
SOLVING THE CURRENT PARADOX

In order to resolve the paradox related to the gate leakage
currents that are emerging from carriers leaving the inversion
layer of a MOS capacitor, we start from the continuity equa-
tion governing the leakage current in the presence of
generation-recombination processes

� · J�r,z,t� +
���r,z,t�

�t
= − e�G�r,z,t� − R�r,z,t�� , �40�

where J�r ,z , t� is the time-dependent leakage current density
relating to the electron charge density ��r ,z , t�. G�r ,z , t� and
R�r ,z , t�, respectively, describe the local generation and re-
combination rates which, in general, are functionals of
��r ,z , t� and the hole density. As such, the continuity equa-
tion does not merely represent a classical conservation law
but may also be derived from rigorous quantum dynamics14

and can thus be used in the present context. Since we explic-
itly assume that all generation-recombination events are ex-
clusively localized in the semiconductor part of the structure,
we integrate Eq. �40� over �W and apply Gauss’ theorem to
the current-density term, yielding

�
��W

dS · J�r,z,t� +
dQ�t�

dt
= − e��t� , �41�

where ��W is the boundary surface of �W, dS denotes the
outward pointing surface element and
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FIG. 4. �Color online� Electron concentration in a Si MOS ca-
pacitor with a 1.8 nm EOT and an acceptor concentration of
1018 cm−3. The areal electron concentration Q0 /LxLy is taken to be
5�1012 cm−2 for all three localization schemes �dashed and dotted
lines� as well as for the steady-state Gibbs average �solid lines�. The
corresponding gate voltage is VG=0.48 V. The vertical axis of the
upper �lower� plot has a linear �logarithmic� scale.
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��t� = �
�W

d3r�G�r,z,t� − R�r,z,t�� �42�

equals the total generation-recombination rate associated
with the inversion layer. The contributions from the bound-
ary planes perpendicular to the x and y axis are found to
vanish while those from the remaining boundary planes yield
the total current at the semiconductor/oxide interface,

− I�z = 0,t� = − �
0

Lx

dx�
0

Ly

dyJz�x,y,0� , �43�

and the vanishingly small total electron current in the sub-
strate

lim
z→�

I�z,t� 
 lim
z→�

�
0

Lx

dx�
0

Ly

dyJz�x,y,z� = 0. �44�

Combining Eqs. �41�, �43�, and �44�, we obtain

I�0,t� =
dQ�t�

dt
+ e��t� . �45�

In general, various mechanisms are contributing to the gen-
eration and recombination events in semiconducting
materials.4,15,16 For instance, electron-hole pairs may be gen-
erated by direct or phonon-assisted band-to-band tunneling
events occurring where the local electric fields grow suffi-
ciently high. Also transitions to intermediate defect levels are
known to enhance generation and recombination currents.
However, the aim of this paper is not to investigate the de-
tails of specific generation-recombination models but rather
to propose a simple generation-recombination-based carrier
refilling mechanism that may be integrated straightforwardly
into the quantum-mechanical description of tunneling
through gate oxide layers. Moreover, since extreme leakage
currents are not considered, we explicitly assume that the
tunneling processes are slow enough to ensure that the
inversion-layer charge hardly changes in time, i.e., �Q�t�
−Q0�� �Q0�. Therefore we propose a refilling model in which
��t� is linearly proportional to Q�t�−Q0,

e��t� = �0�Q�t� − Q0� , �46�

the proportionality constant �0 being a phenomenological pa-
rameter lumping together all relevant generation-
recombination effects. It should be noted that the initial
charge Q0 packet is the thermal equilibrium ensemble which
represents the localized inversion-layer electrons right before
they are “unleashed” at t=0. Next, we need to integrate the
refilling mechanism into the rate equation obeyed by Q�t�.
The latter could, in principle, be provided by averaging the
Heisenberg equation

dQ�t�
dt

= −
i

�
��Q̂�t�,Ĥ�t��� , �47�

where the many-particle Hamiltonian would contain the po-
tential profile induced by VG and contributions from the elec-
tron and hole gases, as well as their interactions with
phonons, photons, and defects, that would sustain the
generation-recombination processes. Here we prefer a sim-

pler approach based on the interplay between exponential
decay due to oxide tunneling �see Sec. II� and the refilling
model defined in Eq. �46�. Hence, we adopt the following
semiclassical rate equation for Q�t�:

dQ�t�
dt

= −
Q�t�

�
− e��t� = −

Q�t�
�

+ �0�Q0 − Q�t�� , �48�

relating Q�t� to the tunneling time � and the generation rate
�0. The solution of Eq. �48� is trivial

Q�t� =
Q0

1 + �0�
��0� + e−�1+�0��t/�� . �49�

From Eqs. �45�, �46�, and �49� it follows that:

I�0,t� = −
Q�t�

�
= −

�0Q0

1 + �0�
�1 +

1

�0�
e−�1+�0��t/�	 . �50�

In particular, the stationary gate current �t→�� reads

IG = −
�0Q0

1 + �0�
, �51�

which clearly illustrates the competition between the tunnel-
ing time � and the generation time 1 /�0. In particular, when
the local generation is a substantially faster process than the
leakage tunneling, we may exploit the inequality �0��1 to
reduce the gate current formula to its simplest form

IG = −
Q0

�
. �52�

Due to the simplicity of the above model, the major effort in
calculating the gate current is in the four-step algorithm de-
scribed in Sec. II, since the resulting decay characteristics
immediately provide Q0 and �, the two basic quantities
needed to evaluate IG.

V. RESULTS AND DISCUSSION

Ignoring the refilling mechanism for now, we first com-
pare the tunneling lifetime calculations obtained from the
three localization schemes. Following the four-step method
discussed in Sec. II, we have calculated the decay of an
inversion-layer charge packet Q�t� and plotted the resulting
curves in Fig. 5. The Schrödinger-Poisson solver developed
in Ref. 9 has been employed to determine the resonant states.

Typically, the infinite-barrier and step-barrier localization
schemes result in an exponential decay modulated by oscil-
lations, while the decay predicted by the MOS cap. scheme
is a very smooth and monotonic function of time. This may
be understood by careful inspection of the wave functions of
the initially bound states which, according to the very defi-
nition of the coefficients 
kn in Eq. �10�, can be written as a
Fourier integral

�n�r,z� =� dk
kn�k�r,z� . �53�

In principle all Fourier components are seen to contribute to
the wave functions extracted from the infinite-barrier and
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step-barrier schemes. In particular, the superpositions of
resonant and off-resonant continuum states occurring in Eq.
�53� are causing the oscillations observed in the function
Q�t�. Indeed, the off-resonant states carry a significant prob-
ability of finding an electron in the gate region, whereas the
resonant states are known to maximize the probability of
finding an electron in the inversion-layer well. Electrons in a
superposition electrons of the states ��n� are therefore seen to
propagate back and forth between the gate and the semicon-
ductor until the charge packet has faded away, while the
frequency of the oscillations is related to the energy differ-
ence of the resonant and off-resonant states. As such, the
observed oscillatory behavior may be interpreted as a
straightforward emanation of a quantum diffusion process
governing the decay of strictly localized states into extended
states.17 On the other hand, the MOS cap. localization
scheme is explicitly designed to select only a restricted set of
Fourier components located in a narrow window around one
particular resonance—provided M is chosen sufficiently
small. The resulting smooth decay shown in Fig. 5 essen-
tially reduces to the exponential decay that defines the tun-
neling lifetime, i.e.,

Q�t��tunneling = Q0 exp�−
t

�
	 , �54�

while the absence of any oscillations can be predicted by
noticing that only a single resonant state contributes to a
given localized wave packet.

Finally, it can be observed from the lower part of Fig. 5
that the tunneling times extracted from the three initialization
schemes are very close, which suggests that they share an
almost identical long-time evolution. Stated otherwise, the
tunneling lifetime depends mainly on the structural proper-
ties of the MOS capacitor and the applied gate voltage, rather
than on the way the initial charge packet Q0 is prepared.

Next, we return to the model that incorporates the genera-
tion events and use the results from the previous steps to
calculate the gate current from Eq. �52�. The resulting calcu-
lations reported in Fig. 6 involve an acceptor concentration
of 1018 cm−3 while the effective oxide thickness �EOT�
ranges from 1.56 to 2.25 nm. The simulated gate currents are
compared with experimental data18 in the same figure.

The calculated results show very good agreement with the
measured gate currents for all reported EOT values, which
justifies the use of the above developed tunneling lifetime
model for a broad variety of leaky MOS devices. Further-
more, the dependence of the tunneling lifetime on the gate
voltage, as plotted in Fig. 7 for different EOTs, strongly sug-
gests the existence of an exponential relation. More explic-
itly, we are tempted to conjecture that

IG =
Q0�VG�
��VG�

=
Q0�VG�

�0
exp�VG

V0
	 , �55�

where, for a given MOS structure, �0 and V0 are positive
constants. As suggested in Sec. IV, we implicitly assume that
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FIG. 5. �Color online� Charge evolution for a Si MOS capacitor
with an 1.2 nm EOT and an acceptor concentration of 1018 cm−3.
The areal electron concentration Q0 /LxLy is set to be 1011 cm−2 for
all three localization schemes �dashed and dotted lines�. The corre-
sponding gate voltage is VG=0.48 V. The vertical axis of the upper
�lower� plot has a linear �logarithmic� scale.
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of the tunneling lifetime model for four different EOTs, while
circles are measured curves.
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FIG. 7. �Color online� Tunneling lifetime versus gate voltage for
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the generation process substantially exceeds the tunneling
rate. As the latter relies on a self-consistent solution of the
Poisson and Schrödinger equations, this assumption also im-
plies that the generation of electron-hole pairs does not ap-
preciably affect the potential profile throughout the MOS ca-
pacitor. This situation typically occurs when the MOS device
suffers from poorly passivated electrically active states,
while being left with lots of generation centers located near
the interface, but is also characteristic for a genuine MOS
field-effect transistor where the highly doped source contacts
provide an almost instantaneous supply of channel electrons.

On the other hand, when the generation time is signifi-
cantly larger than �, the measured gate leakage current would
be dominated by the generation events, as would be the case
for properly surface-passivated devices. Correspondingly, the
solution of Eq. �52� would reduce to

IG = − �0Q0. �56�

Though being a naive oversimplification, this result clearly
indicates the predominance of the generation current. A more
general description incorporating also this regime would re-
quire that the local generation-recombination rate be in-
cluded explicitly on the right-hand side of Poisson’s equa-
tion. This way, the resulting potential profile may account for
the correct balance between the generation and tunneling
rates.

Next, we compare the present model with related earlier
work5,6,19 exploiting as well the properties of the continuum
states and their sharply peaked resonances. Among the first
authors realizing the problem of the current paradox,
Gamow,5 Breit and Wigner6 faced the essential inability of
generating irreversible decay of alpha particles trapped in the
potential well of an atomic nucleus and being described by a
real eigenfunction. Alternatively, they proposed to assign to
the energy eigenvalues an imaginary part that could be iden-
tified as an appropriate linewidth of the resonant state asso-
ciated with the quasibound state of an alpha particle. Corre-
spondingly, the inverse linewidth could be considered a
measure of the “dwell time,” i.e., the time an alpha particle
spends inside the potential well. Moreover, the related imagi-
nary part of the wave numbers describing the standing waves
far away from the nucleus �equivalent to the gate region�
artificially breaks the time-reversal symmetry of the standing
waves, thereby allowing the newly formed complex wave
functions to carry a nonzero current. This approach has been
successfully extended to tackle the problem of gate currents
in the recent past,9,10,19 while the real and imaginary energy
parts could uniquely be identified with the resonant energies
and widths extracted from the energy-depending amplitudes
solving the Schrödinger equation. Nevertheless, we consid-
ered the introduction of complex wave numbers and energies
needed to generate current carrying states as well as the cor-
responding lack of an Hermitian Hamiltonian an essential
drawback of the Gamow approach. In contrast, our model is
merely using the �real� solutions of the Schrödinger equation
to mediate the dynamics of localized charge packets. We
conclude this section with a few remarks on the limitations
of the present model and potential improvements or exten-
sions. First, it’s clear that the generation-limited regime �0�

�1 can only be treated quantitatively if the rate �0 can be
assigned a meaningful numerical value to be extracted from
a microscopic theory extending beyond the above phenom-
enological description of generation-recombination pro-
cesses. The latter may be accounted for, in principle, by in-
serting into Heisenberg Eq. �47� an interaction Hamiltonian
containing generation and recombination processes of the
form ck�

† b−k��
† , where b−k��

† is a hole creation operator. Fi-
nally, it should be noticed that nonparabolic dispersion rela-
tions and the corresponding band-structure calculations20 can
be incorporated into the present formalism without any con-
ceptual difficulty. In particular, the gate currents carried by
holes tunneling out of a p-type channel can be treated in an
analogous way. The computational burden, on the other
hand, would be found to increase, as the longitudinal motion
accounting for the tunneling could no longer be decoupled
from the free-carrier motion in the lateral x and y directions
and would make all subband-related quantities depend on the
two-dimensional lateral wave vector.

VI. CONCLUSION

A model is presented to calculate the gate leakage cur-
rents in MOS devices operating in inversion mode. Relying
on the dynamical evolution of a charge packet initially lo-
calized in the inversion layer, the model provides an algo-
rithm to calculate the tunneling time which is the key quan-
tity needed to unequivocally determine steady-state gate cur-
rents in the tunneling-limited regime, together with the
initially localized charge. Calculated values of the gate cur-
rents agree very well with experimental data whereas, for a
given applied gate voltage, the tunneling time is independent
of the schemes adopted to construct the localized charge
packets. More general, the model enables one to explore
qualitatively the border between the generation-limited and
tunneling-limited regimes. Quantitative predictions need not
be restricted to the tunneling-limited regime either, provided
that a microscopic model describing local generation-
recombination events is included in the Heisenberg dynamics
of the electron and hole operators. Moreover, the computa-
tional procedure leading to the tunneling lifetime, as outlined
for n-type channels with parabolic conduction bands in the
present work, can be generalized to treat as well holes in
p-type inversion layers or electrons residing in nonparabolic
subbands. Finally, solving the current paradox, the present
model demonstrates that the occurrence of sustained tunnel-
ing leakage currents in MOS capacitors entails the local vio-
lation of the electron continuity equation due to the genera-
tion of electron-hole pairs. Correspondingly, the hole current
which manifests itself as a measurable substrate current, vio-
lates as well the local conservation of holes, while the con-
tinuity equation for the total current density is found to hold
all over the structure, as it should be.
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